“Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness”
نویسندگان
چکیده
Human brain adaptation in weightlessness follows the necessity to reshape the dynamic integration of the neural information acquired in the new environment. This basic aspect was here studied by the electroencephalogram (EEG) dynamics where oscillatory modulations were measured during a visuo-attentional state preceding a visuo-motor docking task. Astronauts in microgravity conducted the experiment in free-floating aboard the International Space Station, before the space flight and afterwards. We observed stronger power decrease (~ERD: event related desynchronization) of the ~10 Hz oscillation from the occipital-parietal (alpha ERD) to the central areas (mu ERD). Inverse source modelling of the stronger alpha ERD revealed a shift from the posterior cingulate cortex (BA31, from the default mode network) on Earth to the precentral cortex (BA4, primary motor cortex) in weightlessness. We also observed significant contribution of the vestibular network (BA40, BA32, and BA39) and cerebellum (lobule V, VI). We suggest that due to the high demands for the continuous readjustment of an appropriate body posture in free-floating, this visuo-attentional state required more contribution from the motor cortex. The cerebellum and the vestibular network involvement in weightlessness might support the correction signals processing necessary for postural stabilization, and the increased demand to integrate incongruent vestibular information.
منابع مشابه
Sub-second "temporal attention" modulates alpha rhythms. A high-resolution EEG study.
In the present high-resolution electroencephalographic (EEG) study, event-related desynchronization/synchronization (ERD/ERS) of alpha rhythms was computed during an S1-S2 paradigm, in which a visual cue (S1) predicted a SHORT (600 ms) or LONG (1400 ms) foreperiod, preceding a visual go stimulus (S2) triggering right or left finger movement. Could orienting attention to a selective point in tim...
متن کاملGravity Influences Top-Down Signals in Visual Processing
Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitati...
متن کاملContribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia
Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...
متن کاملThe effect of simulated weightlessness and short-term light-dark cycle on retinoic acid levels in serum and hippocampus of rats
Background: spacecrafts rotate around the Earth every 90 minutes, so the 24-hour cycle turns to 90 minutes. Retinoic acid, an active metabolite of vitamin A, plays a role in regulating the circadian rhythm and its deficiency can impair the biological clock function and consequently impair the circadian rhythm of locomotor activity. The goal of the study was to assay the effects of simulated spa...
متن کاملThe contribution of the fronto-cerebellar system in cognitive processing by
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. Abstract Over two decades of patient and neuroimaging data have provided increasing support for a role of the posterior cerebellum in cognition, particula...
متن کامل